Kamis, 18 April 2013

Perangkat-Perangkat Pada Tower BTS serta Fungsi-Fungsinya

Perangkat-Perangkat Pada Tower BTS serta Fungsi-Fungsinya

Written on:October 25, 2012
Comments
Add One
0
 
Base transceiver station (BTS) atau cell site adalah sebuah peralatan yang memfasilitasi nirkabel komunikasi antara pengguna peralatan (UE) dan jaringan. BTS juga disebut sebagai radio base station (RBS), node B (di Jaringan 3G) atau, cukup, base station (BS). Untuk diskusi dari standar LTE yang ENB singkatan untuk Evolved node B banyak digunakan.
Meskipun istilah BTS dapat diterapkan ke salah satu standar komunikasi nirkabel, biasanya dan umumnya terkait dengan teknologi komunikasi mobile seperti GSM dan CDMA. Dalam hal ini, BTS merupakan bagian dari base station subsystem (BSS) perkembangan untuk sistem manajemen. Ini juga mungkin memiliki peralatan untuk mengenkripsi dan mendekripsi komunikasi, spektrum penyaringan alat (band pass filter), dll antena juga dapat dipertimbangkan sebagai komponen dari BTS dalam arti umum sebagai mereka memfasilitasi fungsi BTS. Biasanya BTS akan memiliki transceiver beberapa (TRXs) yang memungkinkan untuk melayani beberapa frekuensi yang berbeda dan berbagai sektor sel (dalam kasus BTS sectorised). Sebuah BTS dikendalikan oleh kontroler orangtua base station melalui fungsi base station kontrol (BCF). BCF ini dilaksanakan sebagai unit diskrit atau bahkan tergabung dalam TRX di BTS kompak. Para BCF menyediakan operasi dan pemeliharaan (O & M) koneksi dengan sistem manajemen jaringan (NMS), dan mengelola kondisi operasi dari TRX masing-masing, serta penanganan perangkat lunak dan koleksi alarm. Struktur dasar dan fungsi dari BTS tetap sama tanpa teknologi nirkabel.
<>Rectifier

Rectifier sebagai penyearah tegangan dari tegangan AC yang berasal dari PLN dikonversikan ke dalam tegangan searah untuk di komsumsi perangkat lainnya. Salah satunya merk PowerOne, terdapat 6 buah modul, yang tiap2 modulnya mensuplai 30 Ampere, karena minimal pemakaian perangkat adalah 45 Ampere, maka paling tidak modul yang berfungsi sejumlah 3 buah modul (60 A).
Biasanya Untuk BTS hanya dibutuhkan tegangan DC sebesar +27 Vdc atau -48 Vdc.
<>Perangkat BTS
Untuk GSM ada 2 buah system, yaitu 900Mhz dan 1800Mhz. Dalam sebuah BTS bisa dipasang 900Mhz saja atau dua-duanya. Telkomsel, Indosat, XL, HCPT (3), dan AXIS menggunakan ini.
Sedangkan untuk CDMA biasanya cuma satu saja yaitu CDMA2000-1X, atau CDMA EVDO, bekerja pada frekuensi 800Mhz digunakan oleh Telkom Flexy, Esia, Mobile–8, sedangkan untuk frekuensi 1900Mhz , saat ini digunakan oleh Smart Telecom.

Salah satunya merk nokia, beroperasi pada frekuensi 900 GHz terdapat 6 modul utama
  • PWSB : Power suplai independen perangkat GSM/BTS
  • BB2F : BaseBand/pengatur slot trafik pada bts
  • WCGA : Combiner antara transmiter ke DVJA
  • TSGB : TRX unit,menentukan kanal frekuensi
  • DVJA : Duplexer/output semua sektor, sebagai pemisah antara transmiter dengan receiver
  •  M2LA : Sebagai combiner receiver ke DVJA
  • BOIA : Prosesor BTS (bentuk sama dengan BB2F, namun memiliki port penghubung untuk maintenance
<>Antena OMNI
Antenna Omnidirectional di rancang untuk memberikan servis dalam radius 360 derajat dari titik lokasi. Sangat cocok untuk Akses Point untuk memberikan servis bagi WARNET sekitarnya dalam jarak dekat 1-4 km-an. Antenna jenis ini biasanya menpunyai Gain rendah 3-10 dBi.
Potongan medan vertikal memperlihatkan penampang yang medan yang sangat tipis pada sumbu vertikal. Hal ini berarti hanya statiun-stasiun yang berada di muka antenna saja yang akan memperoleh sinyal yang kuat, stasiun yang berada di atas antenna akan sulit memperoleh sinyal.


<>Baterai
Baterei Sebagai backup power ke BTS apabila PLN Padam. Biasanya bisa bertahan sampai 3-4 Jam, tergantung dari Ampere Hour baterei dan Designnya systemnya.
<>Microwave

Microwave system terdiri atas Indoor unit dan Outdoor unit. Indoor unit berada di dalam shelter memiliki port E1 yang dikoneksikan ke Port E1 BTS melalui DDF. Indoor unit juga mendapat suplai tegangan DC dari rectifier yang sama. Sedangkan Outdoor Unit menempel pada Antenna Microwave. Indoor Unit dan Outdoor unit terhubung menggunakan Coaxial Cable.
.
<>Antena Sectoral

Berbentuk persegi panjang, terpasang pada tower dengan ketinggian tertentu berfungsi sebagai penghubung antara BTS dan HandPhone, ada dua type antenna sectoral, yaitu Monotype, biasa dipakai untuk daerah Rural dan Sub Urban dan Dual type untuk daerah Urban (daerah yg padat penduduk).
<>Feeder
Sekilas nampak seperti kabel besar, sebagai media rambatan gelombang radio antara BTS dan Antenna Sector. Ukuran ada yang 7/8, 1-5/8 atau ½.
<>Tower 
Beserta system pentanahannya;  Sebagai media penempatan/penginstalan antenna antenna dan feeder.
<>Shelter
Berada di samping tower, tempat untuk menyimpan equipment (No.1 – 6).

Jumat, 05 April 2013

Belajar Telekomuniakasi dari Master master Telko


Mengenal Istilah Dalam Dunia 3G (Part.3)

Mengenal Istilah Dalam Dunia 3G (Part.3)

Materi diterjemahkan secara gaya bebas dan kupu2 dari http://www.cellular-planningoptimization.com.

Kali ini kita akan membahas tentang apa itu Pillot Pollution
Pillot Pollution memiliki beberapa definisi, diantaranya :
  • Sebuah cell yg memiliki sinyal yg kuat di satu tempat namun tidak masuk sebagai Active Set (AS)
  • Sebuah cell yg memiliki kriteria untuk ditambahkan sebagai Active Set (AS) namun tidak bisa masuk karena jumlah AS sudah penuh 


           

Mengenal Istilah Dalam Dunia 3G (Part.1)

Mengenal Istilah Dalam Dunia 3G (Part.1)

Dalam beberapa hari ke depan kita akan belajar tentang istilah dasar dalam 3G (UMTS). Materi diterjemahkan secara gaya bebas dan kupu2 dari http://www.cellular-planningoptimization.com.

Kali ini kita akan membahas tentang apa itu AS-MS-DN

Active Set (AS)
Sejumlah Cell yang terdeteksi dan berhubungan dan sedang melayani UE serta dikenali oleh jaringan. Saat Drive Test mungkin nampak sebagai SC atau Pilot namun sebenarnya mereka adalah Cell

Monitored Set (MS atau Monitored Neighbour [MN])
Sejumlah Cell yang terdeteksi UE dan sedang mengawasi UE. Cell ini dikenali oleh jaringan namun belum memenuhi kriteria untuk menjadi Active Set (menjadi neighbour).

Detected Set (DS atau Detected Neighbour [DN])
Sejumlah Cell yang terdeteksi UE namun tidak dikenali dalam jaringan (nampak sebagai Missing Neighbour)

                                               

Mengenal Istilah Dalam Dunia 3G (Part.2)

Mengenal Istilah Dalam Dunia 3G (Part.2)

Lanjut dari Materi sebelumnya. Kali ini akan kita bahas beberapa parameter Sinyal yg umum dijumpai dalam Drive Test
RSSI ( Received Signal Strength Indicator )
merupakan parameter yang menunjukan daya terima dari seluruh sinyal pada band frequency channel pilot yang diukur. Dalam artian semua daya sinyal yang terukur oleh penerima pada satu band frequency wcdma di gabungkan menggunakan proses rake receiver.

RSCP ( Received Signal Code Power )
parameter yang menunjukkan daya terima pengukuran dari satu kode pada channel pilot yang utama. Atau bisa diartikan nilai yang ditunjukkan oleh RSCP adalah daya pada sinyal/pilot yang melayani MS (yang utama).

Ec/No
merupakan perbandingan dalam dB dari Energi chip dengan daya noise total yang diukur pada pilot channel yang utama. Sebenarnya Ec/No sama dengan Ec/Io, hanya saja 3GPP tidak mau menggunakan istilah sama dengan IS-95. Ec/No mengindikasikan kualitas jaringan, yang apabila nilainya semakin kecil berarti tingkat interferensinya tinggi.

RSCP (dbm) = RSSI(dbm)+Ec/No(dbm).

EcNo = RSCP - RSSI


Monggo kalau salah dikoreksi

TCH Congestion Analysis

TCH Congestion Analysis


 TCH Availibility

What should I check?
  • Check TCH Availibility and TCH Blocking

Where do I look for it?
  • Use STS counters for TCH performance. The formulas are :

AVAILABLE TCH OF TOTAL NUMBER OF DEFINED TCH

DROPPED TCH CONNECTIONS OF TOTAL NUMBERS OF CALLS TERMINATED IN THE CELL


Why do I need to check this ?
  • Faulty equipment will lead to that all time slots could not be used for handling traffic causing congestion. Low availability can happen if the channels have been manually or automatically blocked and taken out of service. Check the downtime of the cell based on object type ‘DOWNTIME’ is also recommended.


Increasing Traffic Demand

What should I check ?
  • Check if it’s only short-term traffic growth.

Where do I look for ?
Compare traffic trend performance from STS.

Why do I need to check this ?
The high traffic could either be related to an occasional event or due to a long-term growth. Note that by increasing the number of tranceivers may lead to problems with floor space, antenna installations, CDU type, Expansion cabinets and Combiner type.

Load Mean Holding Time

What should I check ?
  • Check Mean Holding Time and Handover Performance.

Where do I look for it ?
  • Look in TCH Mean Holding Time and Handover statistics from STS (refer to next section) :

TCH MEAN HOLDING TIME







Why do I need to check this ?
Too low handover activity might lead to a long mean holding time. A long mean holding time is not a problem, but if there is congestion, new capacity is needed. Increase the number of TCH if no faults.


Low Handover Activity

What should I check ?
  • Check if there is few handover performance and congestion in neighboring cell.

Where do I look for it ?
  • Handover statistic from STS. Check handover parameters such as too high or too low hysteresis values, missing neighbour relations, one-way handover. In addition, review neighboring cell definitions as missing relations could cause handover problems.

Why do I need to check this ?
  • A low handover activity may lead to congestion if the MS is forced to stay on a cell longer than necessary.

Congestion in Surrounding Cells

What should I check ?
  • Check congestion in neighboring cells.s

Where do I need to check this ?
  • Look into STS congestion performance for neighboring cells.
  • Check if Assignments to worse cell is used. If assignment handover to worse cell is used (directed retry). Check the setting of the parameter AWOFFSET.

Why do I need to check this ?
  • Congestion in surrounding cells will push traffic load to the problem cell and preventing traffic from it to be shifted to it’s neighbor cell list. By reviewing the neighbor list, you might find additional neighbors that might not to be so congested. NCS (Neighboring Cell Support) is useful tool in OSS that can help identify the right neighbors based on signal strength.


Features

What should I check ?
  • Check the use of congestion relieving features such as Assignments to Worse cell, Cell Load Sharing and HCS ( Hierarchy Cells Structured ).

Where do I look for it ?
  • Run these BSC command RLLOP (Assignments to Worse), RLLCP (CLS) and RLHBP (HCS band) to see the status of the features. Refer to CAN on how these features parameters are used.

Why do I need to check this ?
  • If the cell is incorrectly defined as higher priority level of Hierarchical Cell Strcture or HCS parameters are not being used properly, it will draw in more traffic than other cells.
  • The interference levels will increase if assignment to Worse cell is used, as some mobiles will be closer to a co-channel cell than was intended in the frequency plan. The feature will be more effective if the neighbors are not congested. In a tight network with a high reuse and congestion in a larger area, the feature might only make the situation worse.
  • The number of idle TCH allowed in both the serving and target cell before CLS is evaluated (CLSEVEL and CLSACC) should be based on the number of transceivers in that cell. This is so that cell resources are utilized to its maximum potential before traffic is pushed out of neighboring cells, this can be achieved by doing trials in this feature.





TCH Dimensioning

What should I check ?
  • Check TCH traffic and congestion.

Where do I look for it ?
  • Identify cells that are heavily congested from the STS statistics during busy hours. Review the TCH dimensioning plan and strategy.

Why do I need to check this ?
  • Bad allocation of TCH in a system may cause unnecessary congestion. Investigate if possible to move transceivers from non-congested areas. Of course, the base station type, CDU-type, current number of transceivers, floor space, Combiner type, etc., should be considered before a recommendation to move transceivers could be made.


High Antenna Position

What should I check ?
  • Check antenna height, antenna type and antenna tilt.

Where do I look for it ?
  • Refer to site data and drive test results. If necessary make a site visit.

Why do I need to check this ?
  • A high antenna position could mean a too large service area. Also antennas placed on hilltops will cover large areas. A large coverage area might mean that the cell takes a lot of traffic. Lower antenna if there is no risk for loss of coverage (no coverage at all). Tilting of the antenna or changing antenna type may also decrease the coverage area.



The flowchart above, explains a general approach to investigate TCH Congestion. The next section describe the action points in this flowchart. The reference to each action point is indicated on the flow chart as well.



TCH Availibility

What should I check?
  • Check TCH Availibility and TCH Blocking

Where do I look for it?
  • Use STS counters for TCH performance. The formulas are :

AVAILABLE TCH OF TOTAL NUMBER OF DEFINED TCH

DROPPED TCH CONNECTIONS OF TOTAL NUMBERS OF CALLS TERMINATED IN THE CELL


Why do I need to check this ?
  • Faulty equipment will lead to that all time slots could not be used for handling traffic causing congestion. Low availability can happen if the channels have been manually or automatically blocked and taken out of service. Check the downtime of the cell based on object type ‘DOWNTIME’ is also recommended.


Increasing Traffic Demand

What should I check ?
  • Check if it’s only short-term traffic growth.

Where do I look for ?
Compare traffic trend performance from STS.

Why do I need to check this ?
The high traffic could either be related to an occasional event or due to a long-term growth. Note that by increasing the number of tranceivers may lead to problems with floor space, antenna installations, CDU type, Expansion cabinets and Combiner type.

Load Mean Holding Time

What should I check ?
  • Check Mean Holding Time and Handover Performance.

Where do I look for it ?
  • Look in TCH Mean Holding Time and Handover statistics from STS (refer to next section) :

TCH MEAN HOLDING TIME







Why do I need to check this ?
Too low handover activity might lead to a long mean holding time. A long mean holding time is not a problem, but if there is congestion, new capacity is needed. Increase the number of TCH if no faults.


Low Handover Activity

What should I check ?
  • Check if there is few handover performance and congestion in neighboring cell.

Where do I look for it ?
  • Handover statistic from STS. Check handover parameters such as too high or too low hysteresis values, missing neighbour relations, one-way handover. In addition, review neighboring cell definitions as missing relations could cause handover problems.

Why do I need to check this ?
  • A low handover activity may lead to congestion if the MS is forced to stay on a cell longer than necessary.

Congestion in Surrounding Cells

What should I check ?
  • Check congestion in neighboring cells.s

Where do I need to check this ?
  • Look into STS congestion performance for neighboring cells.
  • Check if Assignments to worse cell is used. If assignment handover to worse cell is used (directed retry). Check the setting of the parameter AWOFFSET.

Why do I need to check this ?
  • Congestion in surrounding cells will push traffic load to the problem cell and preventing traffic from it to be shifted to it’s neighbor cell list. By reviewing the neighbor list, you might find additional neighbors that might not to be so congested. NCS (Neighboring Cell Support) is useful tool in OSS that can help identify the right neighbors based on signal strength.


Features

What should I check ?
  • Check the use of congestion relieving features such as Assignments to Worse cell, Cell Load Sharing and HCS ( Hierarchy Cells Structured ).

Where do I look for it ?
  • Run these BSC command RLLOP (Assignments to Worse), RLLCP (CLS) and RLHBP (HCS band) to see the status of the features. Refer to CAN on how these features parameters are used.

Why do I need to check this ?
  • If the cell is incorrectly defined as higher priority level of Hierarchical Cell Strcture or HCS parameters are not being used properly, it will draw in more traffic than other cells.
  • The interference levels will increase if assignment to Worse cell is used, as some mobiles will be closer to a co-channel cell than was intended in the frequency plan. The feature will be more effective if the neighbors are not congested. In a tight network with a high reuse and congestion in a larger area, the feature might only make the situation worse.
  • The number of idle TCH allowed in both the serving and target cell before CLS is evaluated (CLSEVEL and CLSACC) should be based on the number of transceivers in that cell. This is so that cell resources are utilized to its maximum potential before traffic is pushed out of neighboring cells, this can be achieved by doing trials in this feature.





TCH Dimensioning

What should I check ?
  • Check TCH traffic and congestion.

Where do I look for it ?
  • Identify cells that are heavily congested from the STS statistics during busy hours. Review the TCH dimensioning plan and strategy.

Why do I need to check this ?
  • Bad allocation of TCH in a system may cause unnecessary congestion. Investigate if possible to move transceivers from non-congested areas. Of course, the base station type, CDU-type, current number of transceivers, floor space, Combiner type, etc., should be considered before a recommendation to move transceivers could be made.


High Antenna Position

What should I check ?
  • Check antenna height, antenna type and antenna tilt.

Where do I look for it ?
  • Refer to site data and drive test results. If necessary make a site visit.

Why do I need to check this ?
  • A high antenna position could mean a too large service area. Also antennas placed on hilltops will cover large areas. A large coverage area might mean that the cell takes a lot of traffic. Lower antenna if there is no risk for loss of coverage (no coverage at all). Tilting of the antenna or changing antenna type may also decrease the coverage area.
WebRepOverall rating

ANALISIS LAYANAN PAKET DATA SISTEM CDMA 2000-1X BERDASARKAN DATA DROP CALL DAN DATA DRIVE TEST PADA ABIS INTERFACE

ANALISIS LAYANAN PAKET DATA SISTEM CDMA 2000-1X BERDASARKAN DATA DROP CALL DAN DATA DRIVE TEST PADA ABIS INTERFACE

1        Too Many Erasure Frames

Parameter too many erasure frames merupakan penyebab utama terjadinya drop call. Untuk menurunkan
nilai CDR yang dikarenakan too many erasure frames,
terdapat beberapa langkah yang harus dilakukan yaitu :

a) Pengecekan pada cakupan.
b) Pengecekan pada forward dan reverse link interference.
c) Pengecekan pada kesalahan peralatan BTS ( seperti RLDU, CDDU, CDFU dan power amplification module ).
d) Serta mengecek konfigurasi parameter yaitu : parameter kontrol daya dan parameter handoff.

2        No Reverse Frames Received

Batas durasi yang diizinkan untuk menerima reverse frame adalah 240ms. Kegagalan menerima reverse frame 
dapat terjadi karena kesalahan pada link Abis setelah terbentuknya kanal trafik. Apabila pada suatu kasus terjadi multi-way soft handoff , jika satu cabang tidak dapat menerima reverse frame maka cabang yang lain dapat menerima frame tersebut. Tetapi jika panggilan tersebut hanya memiliki satu cabang maka akan terjadi drop call ketika FMR ( Frame Measure Rate ) tidak menerima reverse frame selama 240ms.

Solusi untuk mengatasi terjadinya drop call karena tidak diterimanya reverse frames adalah : melakukan pengecekan pada Abis link dengan cara menambah proper time.

3        Kegagalan pada Interface Abis

Solusi untuk mengatasi terjadinya drop call karena kegagalan pada interface Abis yaitu melakukan
pengecekan pada Interface Abis yang menghubungkan BTS dengan BSC. Apabila terjadi kekurangan sumber daya pada link tersebut maka perlu diberikan penambahan besar bandwidth atau dengan penambahan link fisik E1/ alokasi maksimal pda V-LAN mode Selain itu juga, melakukan pengecekan pada peralatan BSC yang berkaitan dengan interface Abis dari arah BTS ke BSC nya.

4        Kegagalan pada Interface A1

Untuk mengatasi terjadinya drop call karena kegagalan pada interface A1, terdapat beberapa langkah yang harus dilakukan yaitu :

1) Melakukan pengecekan pada bagian rangkaian interface A1.
2) Melakukan pengecekan pada sumber daya interface A3/A7.
3) Melakukan pengecekan pada peralatan BSC lain yang berkaitan dengan interface A1.

5        Kegagalan pada Packet Control Function (PCF)

Untuk mengatasi kegagalan pada PCF maka dilakukan beberapa solusi antara lain :

1)      Melakukan pengecekan sumber daya interface A8 dan sumber daya lain yang berkaitan. Kekurangan sumber daya pada interface A8 dapat diatasi dengan cara penambahan kanal sumber daya (resource channel) yaitu CE resource. Penambahan carrier juga dapat dilakukan apabila terjadi kekurangan resource walsh code.
2)      Pesan terjadinya kesalahan yang dikirim oleh PDSN ( paket Data Serving Node ). Mengikuti petunjuk kesalahan yang dikirim oleh PDSN tersebut.

3)      Drop Call Akibat Faktor Lain : Untuk mengatasi drop call, dapat dilakukan perbaikan langsung pada site yang mengalami gangguan dan melakukan optimisasi berdasarkan ke gagalan dari coverage, call switch on pada voice ataupun paket data. 

6        Kegagalan Interface A2

Untuk mengatasi terjadinya drop call  karena kegagalan pada interface A2, disebabkan : 

Kegagalan sistem informasi pada paket pengiriman 64 kbps antara switch, dan element informasi di ISDN, MSC dan Base Station

PENGERTIAN TRANSMISSION EVDO DAN HSDPA

PENGERTIAN TRANSMISSION EVDO DAN HSDPA


Pengertian Transmission  EVDO  atau Pengertian EVDO:
EVDO atau Evolution Data Only/Evolution Data Optimized adalah suatu standar untuk transmisi data secara nirkabel komunikasi generasi ketiga atau yang dikenal dengan 3G, berbeda dengan 3G pada GSM, EVDO diciptakan secara khusus hanya untuk CDMA dengan menggunakan frekuensi radio.
EVDO menggunakan jaringan CDMA 2000 untuk menyediakan akses kepada perangkat telekomunikasi jaringan bergerak dengan interface pada kecepatan 2,4 Mbps untuk EVDO Rev.0, dan 3,1 Mbps untuk EVDO Rev.A, sementara untuk EVDO Rev.B masih belum diketahui berapa kecepatan yang bisa dihasilkan oleh revisi ini, yang pasti tentunya kapasitas bandwith transmisinya lebih unggul ketimbang dua EVDO sebelumnya
Pengertian HSDPA
High-Speed Downlink Packet Access (HSDPA) adalah sebuah protokol telepon genggam dan kadangkala disebut sebagai teknologi 3,5G. HSDPA merupakan evolusi dari standar W-CDMA dan dirancang untuk meningkatkan kecepatan transfer data 5x lebih tinggi. HSDPA memdefinisikan sebuah saluran W-CDMA yang baru, yaitu high-speed downlink shared channel (HS-DSCH) yang cara operasinya berbeda dengan saluran W-CDMA yang ada sekarang.

Kamis, 04 April 2013

Bahan Bacaan Unuk Nokia Siemens Network

http[:]//www.ziddu[.]com/download/17995319/06_PCHOS9.ppt[.]html
http[:]//www.ziddu[.]com/download/17995320/07_PowercontrolS9.ppt[.]html
http[:]//www.ziddu[.]com/download/17995321/03_protocols.ppt[.]html
http[:]//www.ziddu[.]com/download/17995322/04_rrmanagementS9.ppt[.]html
http[:]//www.ziddu[.]com/download/17995323/02_idlemodes9_1.ppt[.]html
http[:]//www.ziddu[.]com/download/17995324/03_protocols.doc[.]html
http[:]//www.ziddu[.]com/download/17995325/08_HOflowchart.ppt[.]html
http[:]//www.ziddu[.]com/download/17995326/02_idlemodes9_2.ppt[.]html
http[:]//www.ziddu[.]com/download/17995327/05_measurementsS9.ppt[.]html
http[:]//www.ziddu[.]com/download/17995328/01_channelconfigS9.ppt[.]html
http[:]//www.ziddu[.]com/download/17995315/11_S9HalfRateDualBand.ppt[.]html
http[:]//www.ziddu[.]com/download/17995316/10_S9Ext_ICE.ppt[.]html
http[:]//www.ziddu[.]com/download/17995317/09_IUO_S9_11.ppt[.]html

What Is 4G? An FAQ On Next Generation Wireless

What Is 4G? An FAQ On Next Generation Wireless


Even if you’re not paying much attention to the fast-moving mobile world, you’ve probably seen some mention of 4G — and you’re likely to see a lot more in the coming week, as Mobile World Congress 2011 (MWC) gets underway in Barcelona. Representing the next generation in mobile technology, 4G promises faster speed and better coverage.
But it also represents a confusing mish-mash of competing standards and marketing speak — there is no single 4G technology. Wireless carriers and handset makers are busy jockeying for position, trying to prove why their breed of 4G is better than the rest. A slew of 4G phones is set to be launched at MWC.
We’ve sifted through the buzz words sea of acronyms to distill the facts about 4G into a single FAQ. If you have more questions, let us know — and watch for our full week of MWC coverage.
1. What is 4G, and why should I care?
In theory, 4G is the fourth generation of cellular communications, a successor to current cellular networks known as 3G (third generation). In practice, 4G is a combination of marketing speak and future tech. Most of the systems billed as “4G” could be more accurately called 3.5G, or 3.75G. But the plan is for these systems to upgrade to full 4G in the future.
The promise of 4G is two-fold. Cellular data speeds will be faster — 10x faster than current 3G speeds. And the technology can help solve the “last mile” dilemma (the difficult final leg of connecting customers to a network) that prevents rural areas from getting service. 4G data can move faster, and it can get to more people.
2. So how many flavors of 4G are there, and what are the advantages of each?
Currently, advertised 4G is really just late-stage 3G. The two formats designated by the International Telecommunication Union (ITU) as “true 4G technologies” are:
  • LTE Advanced (Long Term Evolution Advanced)
  • WiMAX Release 2
There aren’t any large-scale deployments of either of these. However, their predecessors — LTE and WiMAX — are currently available.
As the wireless companies advertise it, 4G consists of three different technologies:
HSPA+ — This is more like an upgrade to regular 3G. HSPA+ offers faster speeds, but that take advantage of the same infrastructure. The first HSPA+ deployments began in 2008, and are now widely available throughout the world. T-Mobile’s “4G” network in the U.S. is HSPA+. Likewise, the first stage in AT&T’s 4G roll-out includes HSPA+.
LTE — LTE, or Long Term Evolution, doesn’t fully comply with 4G requirements. But it is what most people consider 4G. This is the system being adopted by Verizon, Metro PCS and AT&T in the U.S. Most European carriers have also committed to LTE. It is upgradable to LTE Advanced — so once that kicks in, it will be easy to upgrade an LTE phone into full-on 4G. Verizon started deploying its LTE network in December 2010. AT&T has announced it will start rolling out 4G LTE the second half of 2011. AT&T has a HSPA+ deployment, which it will use as a backup to LTE. Both AT&T and Verizon expect to have the bulk of their LTE deployments in place by the end of 2013.
WiMAX — This is what Sprint, Nextel and Clearwire are using in the U.S. It’s also the dominant service in Canada. Sprint’s 4G network combines the Clearwire 4G data network with Sprint’s 3G voice network.
3. When will 4G be up and running? Should I buy a 4G phone now?
Networks using either LTE or WiMAX should be able to upgrade to full 4G in the future. HSPA+ is available now. It’s a stretch to call HSPA+ 4G. WiMAX and LTE have the advantage of being precursors to the 4G standards. But the coverage area of HSPA+ far exceeds anything LTE can manage for at least three years. It’s not 4G, but it’s fast and it’s a nice stop-gap.
LTE — which is emerging as the global standard for 4G — is still in the earliest stages of deployment. Verizon is planning on doubling its coverage area in the next 18 months but it will be three years before it expects a full roll-out.
4. Is this like a VHS versus Betamax situation, where one of the flavors will die out eventually?
Sadly, yes. Fortunately, most wireless carriers seem to be rallying around one standard: LTE. It is viewed as the natural upgrade from UMTS, the 3G system in use by most of the world.
5. How fast is 4G, really? Can I cancel my ISP subscription yet?
4G has the potential to be insanely fast. The various technologies should be able to deliver download speeds of 1Gbps when stationary (in the home), and 100 Mbps while mobile. Those kinds of speeds make cable and DSL networks look like dial-up.
In practice, neither LTE or WiMAX is going to offer that kind of speed. In the best of circumstances, users can expect around 10 Mbps from WiMAX or LTE. As coverage areas increase and networks grow more robust, that number could increase.
Most users will not be able to replace a home Internet connection with 4G, and that likely won’t change for several more years, at least. The exception is users in rural areas, where it’s often extremely difficult to get cable, fiber or DSL, and who have to rely on satellite Internet. For these users, even the first wave of LTE or WiMAX may be speedier than what they get from satellite — and at a lower price.
6. Is there such a thing as 5G, and should I wait for it?
4G was only officially ratified in December 2010, so we’re quite a few years away from 5G actually happening. The standards bodies aren’t even talking about 5G right now. But we wouldn’t be surprised if wireless carriers didn’t start describing LTE Advanced — true 4G — as 5G.
7. What is Voice over LTE (VoLTE), and why is it important?
On most 4G systems, the 4G part of the network is used for data transfer while 3G — or in some cases, even 2G — is used for voice calls.
The reason that Verizon cannot support voice and data simultaneously is because it only uses 3G for its data network and still defaults to 2G for voice. Initially Verizon was going to do something similar with LTE — that is, use LTE for data only, and default to old-school CDMA for voice calls. But earlier this month, Verizon announced it will be experimenting with Voice over LTE (VoLTE) and recently made its first VoLTE call.
Don’t expect to see phones that support VoLTE until 2012. But Verizon says some 4G phones will get software upgrades to support the feature when it is available.
Calls made from one VoLTE device to another are supposed to sound better. Because the voice network sits on top of the data network, it means video calling services like Skype can operate seamlessly (and the carriers can better compete with Skype). Increasingly, carriers are going to continue to shift from a time-based subscription model to one that is purely based on data.
VoLTE has the potential to bring both voice and data services to parts of the world that have had a hard time getting access to either.
[Source: mashable.com]

Goodbye IPv4… Hello IPv6!

Goodbye IPv4… Hello IPv6!


You’ve probably heard of IPv6. These little letters, increasingly known, will bring up a number of innovations and changes that should occur gradually over the World. Changes that for sure will affect you, directly or indirectly – mainly due to the benefits that it provides. In Telecommunications area, the universe related to IPv6 is also increasingly in focus, and this subject for sure will be present to All  of us in near future.
What is IP?
To begin, let’s first remember a little about IP. Simply put, IP (Internet Protocol) is the standard that controls the routing and structure of data transmitted over the Internet. It is the protocol that controls the way devices such as computers communicates over a network.
For two devices to communicate, each one must have an identification. In a cellular network, each cell has unique number (eg 8 digits).

With computers we have the same case, only the identification ‘number’ is a little different. Each ‘number’ has 4 parts, and each part can have up to three digits (and again, each part can vary from 0 to 255).

As in cellular networks, we can’t have two devices with the same number on the computers network, each one must have a unique IP that identifies it. It turns out that today, we have not only computers using IP. And this finite number of possible combinations is no longer sufficient to meet the great demand for these new devices. And that’s where the problems start: IPv4 …
IPv4
The ‘current’ version of IP is the version 4, so IPV4. It has the format shown above, and was standardized at a time was more than enough to connect Research Centers and Universities – the initial goal of the Internet. In more technical terms, IPv4 is a sequence of 32 bits (or four sets of 8 bits). The 8 bits can range from 0 to 255 (from 00000000 to 11111111), which gives us a total of up to 4 billion different IP’s (or more precisely 4,294,967,296 IP’s).
Although it is a very large number, we know that is running out. By the early 90′s for example, most user’s connections to the Internet was through dial-up modems. Currently, with the popularization of the Internet, the picture is quite different. Virtually everybody use ‘Always-On’ broadband connections: The growth of addresses consumption is exponentially increasing. So, what to do?
Extending the life of IPv4
An alternative, which is not really a solution, is to create ways to avoid conflicts. In this case, it is common to use techniques or tricks to increase the number of addresses and allow the traditional client server setup, such as:
  • NAT (Network Address Translation)
  • CIDR (Classless Interdomain Routing)
  • Temporary Addresses Assignment (such as DHCP – Dynamic Host Configuration Protocol)
However, these techniques do not solve the problem, only help to temporarily minimize the problem IPv4 limitation. That’s because they do not meet the main requirements of True Network and User Mobility. Existing applications require an increasing amount of bandwidth, while the NAT represents a considerable impact on the performance of network equipment.
And as mentioned earlier, we now have equipments that needs to be ‘Always On’, that is, ensuring that anyone can be connected at any time. This requirement is an impediment to this address translation. We also have the problem of plug-and-play equipments, each time more numerous, and with even more complicated protocol requirements.
In short, what happens is that we ended up having a problem: we must choose between ‘allow new services’ or ‘increase network size’. But we need both, and then what to do?
IPv6
The solution is quite natural: creating a new format, larger than the current one, to meet future demand. And this new format, or new version is the 6. Hence, IPv6 – The Next Generation Internet Protocol. Even that IPv6 is also known as IPng (next generation). Although the ‘solution’ is apparently simple, its implementation isn’t. Unfortunately, things are not nearly so easy to make that change. Certainly, much work remains to be done, but the bigger problem is just due to those responsible for configuration, or Network Administrators.
There is much controversy about when the world will be ready for IPv6, but it’s certainly the path that must be followed. We should probably have an episode like ‘Millennium Bug’ in 2000, where some people predicted chaos in computer networks. But back to talking about the new format, it is now a sequence of 128 bits. Using the same calculation used above, we arrive at a total 340,282,366,920,938,463,463,374,607,431,768,211,456 different combinations of IP.
Now yes, a ‘very’ large number: To have an idea, it is 4 billion times larger than the number of current IPv4 format! To shorten some the format, it will be used hexadecimal notation instead of decimal, used in IPv4. The new format will look like this:
FDEC: 239A: BB26: 7311:3 A12: FFA7: 4D88: 1AFF
Note that an address is still very large, and possibly emerge a way of shortening it.
Advantages of IPv6
To clarify the advantages of IPv6, let’s enumerate some of them.
* Much more addresses
The main advantages of IPv6 is the simplest to understand: more addresses available!
* Mobility!
In Mobile IPv4, the transmission of data packets is usually based on a triangular routing, where packets are sent to a proxy server before reaching their final destination. In IPv6, the degree of connectivity is improved (since each one has its unique IP), and each device can communicate directly with other devices, making this type of communication much more efficient.
* Auto Configuration
A new feature in IPv6 standard (non-existent in IPv4) allows IPv6 hosts to automatically configure to each other. It is the SLAAC. The SLAAC (Stateless Address Auto Configuration) helps in the design of networks, making remote settings far more simplified.
* Simpler Packet Format
Although IPv6 is much more complex than IPv4 in many other aspects, the format of the packet is simpler in IPv6 – Header has fixed size, and fewer fields. Thus, the process of forwarding packets for example turn out to be simpler, which increases the efficiency of routers.
* Jumbograms
The data flow in a network is not continuous: it is done through discrete transmission of packets. Depending on the information being transmitted, several packets are needed. Because each packet must carry information other than the data itself, we ended up having a ‘wastage’ with these traffic control information, such as those used for routing and error checking.
In IPv4, there is a limit of 65,535 bytes of payload (recalling, octet is a group of 8 bits, eg 11111111). Today, this limit of 64kB is extremely low compared to the transmitted data. For example, in a simple video transmission, thousands of packets needs to be transmitted – each one with its ‘extra traffic’. In IPv6, this limit is much higher: 4,294,967,295 octets. That is, we can send up to 4 GB in a single packet, Jumbograms!
* Native Multicasting, Anycast
The transmission of packets to multiple destinations in a single send operation is one of the basic specifications of IPv6. In IPv4, this implementation is optional.
In addition, IPv6 defines a new type of service, the Anycast. As the multicast, we have groups that receive and send packets. The difference is that when a packet is sent to an anycast group, it is delivered only to one of group member.
* More Security – Network Layer
In IPv4, IPsec, an Network Layer Authentication and Encryption Protocol is not required, and is not always implemented. In the IPv6, we have native support for IPsec, and this implementation is mandatory.
That is, VPNs and secure networks are much easier to build and manage in the future. IPv6 also does not rely, or has no need for fields of type ‘checksum’ to ensure that the information was transmitted correctly. Now the error checking is responsibility of transport layers (such as UDP and TCP protocols), and one reason is that the current infrastructure is more robust and reliable than several years ago, that is, we have fewer errors during transmission. The result: easier to implement, greatly facilitating the development of systems such as for the house network-enabled devices.
IPv4 to IPv6 Transition
The transition from IPv4 to IPv6 must happen slowly and gradually. It will only end when there is no more IPv4 device. In other words, this transition will take years. IPv6 was not designed to replace IPv4, but to solve its problems. It does not have interoperability with IPv4, that is, they don’t ‘match’, but both will exist in parallel for a long time.
So one of the main challenges will be regarded to communication between these networks, which should take advantage of existing IPv4 infrastructure. Although there’s no ‘interoperability’ with IPv4 not IPv6, they need some way to communicate, ie, IPv6 needs a certain ‘compatibility’ with the previous version.
Suppose two IPv6 hosts wish to communicate with each other, but among them there are only IPv4 hosts. And then, what to do? One technique that can be used is ‘tunneling’, as shown in figure below.
In this case, the IPv6 packets are re-packetd in IPv4 format, sent through the IPv4 hosts and unpacked when they reach their IPv6 destination. Of course, in this example, we will not have such features as priority and flow control. Anyway, this is only a possible technique, and a lot has changed since IPv6 was designed. As more people come to deal with IPv6, it is possible that better solutions emerge.
Test your IPv6
If you want to know if you’re ready for IPv6, a good site is as follows.
http://test-IPv6.com/
There you can get an idea of your IPv6 connectivity through a series of automatic tests, as shown below.
Conclusion
Today we saw a brief overview of IPv6, aa Next Generation Internet Protocol. But now, a very important observation: IPv6 is not totally different from IPv4, or in other words, everything you learned over IPv4 will be very useful when dealing with IPv6. IPv6 brings many new features compared to the current protocol IPv4.
In summary IPv6 is much better than IPv4 for addressing, routing, security, network address translation, administrative tasks and design, and support for mobile devices. Of course, at first glance, IPv6 seems to be the solution to all problems. But remember that its implementation will require a lot of work. Anticipating this scenario, IPv6 has a last feature, the definition of a set of possible plans for migration and transition – one of the biggest challenges to be coping in the near future.
The explanations above represent only a simplified summary of this protocol, so you can get an idea of what lies ahead.
[Source: telecomhall.com]

What is RF Drive Test ?

What is RF Drive Test (Testing)?


Every good RF design, after its implantation should be evaluated. There are few ways to do this, for example through analysis of KPI (Key Performance Indicator) or through prediction tools and signal interference. Other very common and efficient way to evaluate the network is conducting a Drive Test. But what is it?
The name is intuitive: take a drive test. The Drive Test is a test performed in cellular networks regardless of technology (GSM, CDMA, UMTS, LTE, etc. …). Means collecting data on vehicle movement. Its variation has also intutive: Walk Test, ie, collect data by walking areas of interest.
The analysis of drive test are fundamental for the work of any professional in the field of IT and Telecom comprising two phases: data collection and data analysis.
Although through the analysis of KPI’s we can identify problems such as dropped calls, among others, the drive tests allow a deeper analysis in field. Identifying areas of each sector of coverage, interference, evaluation of network changes and various other parameters.
Then let’s know more about this technique, and know what we can do with it?
What is a Drive Test?
Drive Test, as already mentioned, is the procedure to perform a test while driving. The vehicle does not really matter, you can do a drive test using a motorcycle or bicycle. What matters is the hardware and software used in the test.
  •     A notebook – or other similar device (1)
  •     with collecting Software installed (2),
  •     a Security Key – Dongle – common to these types of software (3),
  •     at least one Mobile Phone (4),
  •     one GPS (5),
  •     and a Scanner – optional (6).
Also is common the use of adapters and / or hubs that allow the correct interconnection of all equipment.
The following is a schematic of the standard connections.
The main goal is to collect test data, but they can be viewed / analyzed in real time (Live) during the test, allowing a view of network performance on the field. Data from all units are grouped by collection software and stored in one or more output files (1).

  •     GPS: collecting the data of latitude and longitude of each point / measurement data, time, speed, etc.. It is also useful as a guide for following the correct routes.
  •     MS: mobile data collection, such as signal strength, best server, etc …
  •     SCANNER: collecting data throughout the network, since the mobile radio is a limited and does not handle all the necessary data for a more complete analysis.
The minimum required to conduct a drive test, simplifying, is a mobile device with a software to coleect data and a GPS. Currently, there are already cell phones that do everything. They have a GPS, as well as a collection of specific software. They are very practical, but are still quite expensive.
Drive Test Routes
Drive Test routes are the first step to be set, and indicate where testing will occur. This area is defined based on several factors, mainly related to the purpose of the test.
The routes are predefined in the office.
A program of a lot of help in this area is Google Earth. A good practice is to trace the route on the same using the easy paths or polygons. The final image can then be brought to the driver.

Some software allows the image to be loaded as the software background (geo-referenced). This makes it much easier to direct routes to be followed.
It is advisable to check traffic conditions by tracing out the exact pathways through which the driver must pass. It is clear that the movement of vehicles is always subject to unforeseen events, such as congestion, interdicted roads, etc.. Therefore, one should always have on hand – know – alternate routes to be taken on these occasions.
Avoid running the same roads multiple times during a Drive Test (use the Pause if needed). A route with several passages in the same way is more difficult to interpret.
Drive Test Schedule
Again depending on the purpose, the test can be performed at different times – day or night.
A Drive Test during the day shows the actual condition of the network – especially in relation to loading aspect of it. Moreover, a drive test conducted at night allows you to make, for example, tests on transmitters without affecting most users.
Typically takes place nightly Drive Test in activities such System Design, for example with the integration of new sites. And Daytime Drive Test apply to Performance Analysis and also Maintenance.
Important: regardless of the time, always check with the responsible area which sites are with alarms or even out of service. Otherwise, your job may be in vain.
Types of Calls
The Drive Test is performed according to the need, and the types of test calls are the same that the network supports – calls can be voice, data, video, etc.. Everything depends on the technology (GSM, CDMA, UMTS, etc. …), and the purpose of the test, as always.
A typical Drive Test uses two phones. A mobile performing calls (CALL) for a specific number from time to time, configured in the Collecting Software. And the other, in free or IDLE mode, ie connected, but not on call. With this, we collect specific data in IDLE and CALL modes for the network.
The calls test (CALL) can be of two types: long or short duration.
Short calls should last the average of a user call – a good reference value is 180 seconds. Serve to check whether the calls are being established and successfully completed (being a good way to also check the network setup time).
Long calls serve to verify if the handovers (continuity between the cells) of the network are working, ie calls must not drop.
Types of Drive Test
The main types of Drive Test are :
  •     Performance Analysis
  •     Integration of New Sites and change parameters of Existing Sites
  •     Marketing
  •     Benchmarking
Tests for Analysis Performance is the most common, and usually made into clusters (grouping of cells), ie, an area with some sites of interest. They can also be performed in specific situations, as to answer a customer complaint.
In integration testing of new sites, it is recommended to perform two tests: one with the site without handover permission – not being able to handover to another site – thus obtaining a total visualization of the coverage area. The other, later, with normal handover, which is the final state of the site.
Depending on the type of alteration of the site (if any change in EIRP) both tests are also recommended. Otherwise, just perform the normal test.
Marketing tests are usually requested by the marketing area of the company, for example showing the coverage along a highway, or at a specific region/location.
Benchmarking tests aims to compare the competing networks. If the result is better, can be used as an argument for new sales. If worse, it shows the points where the network should be improved.
Data Collecting (almost) Flawless
Who has done a Drive Test before already knows this: It looks as Murphy’s sits in the back seat. That’s because a lot of problems – but preventable – always end up happening.
To avoid, or at least minimize, the occurrence of these problems, always make a checklist before starting the Drive Test.
It is very frustrating to run a route, and only in order to realize that the data were not collected properly.
So before you start, check all connections, always! Mainly, make sure that all equipment is properly energized. You will not want to see a low battery warning on a busy road, will you?
When we say check, include making sure that the connections are tight and will not drop with vehicle movements.
Also make sure the equipment is tied, or you will see a flying laptop in case you need to give a halt.
When assembling the equipment, maintain a distance of at least a foot between each antenna, thereby ensuring that we have no electromagnetic interference or distortion of the radiation pattern of antenna that can affect measurements.
Making sure that all equipment involved are tied and connected to the power source, verify now that all were identified by the collection software. This must be done using the program interface, which displays each element on which port is connected properly.
Now with the equipment identified, make sure the GPS has acquired satellites it needs to determine its position. You must be an open area with sight to the satellites. It is advisable to configure the software to do the collection in Degrees, Minutes and Seconds. Familiarize yourself with the concept.
Another fact that should be taken into account in relation to its GPS antenna. It should generally stay in one place on the vehicle roof, where you can see the sky. If it is not waterproof, it is necessary to protect it with plastic if it rain.
If everything is OK with GPS, start a test collection to verify that all data being written.
In the program main window, make it an indicator that tells if the data are being recorded. Also note that the parameters of the network are visible on the window of each device – mobile, gps, scanner, etc.. Some software also offers the facility to visualize this data without saving. It is very important to make sure everything is OK before you start.
And now, finally, but certainly most important, remember that: first, you’re driving!
It is recommended whenever possible to have one vehicle driver and one equipments operator. If this is not possible, always start, stop or make changes to a collectionat a secure point of the road.
And of course: always check the conditions of the vehicle, and always wear your seat belt!
Annotations
Most software offer the facility to add notes (Marker) during the Drive Test. Whether through it, or using a piece of paper, always make notes.
Information related to the test should be recorded for future aid in the analysis. For example, how is the weather (rain), if there is some very big obstacle in the area, possible sources of noise, etc …
And what is collected?
Okay, but what is actually collected?
Well, before that, we must ensure that data is able to be recorded. Remember that we are using a notebook, which arguably is subject to freeze the screen lock.
And if so, what to do? Unfortunately, there is much besides restarting the equipment.
But some practices can also minimize these errors.
A typical file size of Drive Test is from 30 minutes to an hour. Of course everything will depend on the size of the file, which in turn depends on information being recorded.
Very large files suffer more risk of being corrupted – especially in case of malfunction of the notebook – and are more difficult to move, load, and even to analyze.
Always leave a few GB free on your HD (Hard Drive) before beginning any data collection. And use the least amount of RAM specified – required – the software collection.
Another important thing: do not open or use other programs when you are collecting data only when strictly necessary.
Drive Test files are always big, and you’re always moving them. So keep a daily basis – weekly is appropriate – to perform a defragmentation of hard drive and a scan for errors.
Whenever you finish the collection, stop the ongoing calls, and only then stop collecting. Otherwise, these calls may be interpreted erroneously as falls.
Now, yes. If the data were collected, we can talk about them. And to vary, depending on the equipment used and the purpose of Drive Test.
In the case of mobiles, there are collected all the messages exchanged between the sites and it, with all layers of information – even if you don’t know much of it. It’s because in most critical cases, such data can be sent to better prepared laboratories for deep analysis.
If using a scanner, we also have information from sites that were not “seen” by the mobiles.
Of course, everything is configurable, but it’s always good to use the default setting, and record everything that is possible.
All information is stored with their respective data Date and Time as well as its geographical position.
Typical example of data output is shown below.

Equipment and Collection Software
We have spoken enough of them. And what are the equipment and collection software recommended?
Well, that question is not easy. Let’s make an analogy: What is the car that you will buy next year?
Got it? You’ll have to check what your need, availability in the market, and the best cost benefit. You may even continue by walking.
And with the equipment and software to collect and post-processing of Drive Test is the same.
You should verify if it is compatible with your network, what are the differential costs and benefits, not least, support!
Remember that new tools and features are constantly emerging. Keep up to date on this subject.
Note: we could have listed here some equipment and software, for example, the one we use. But we prefer not to quote any of them, to avoid the risk of eventually being somewhat unfair.
But anyway, whatever the equipment, software and procedures used, the end result is always the same: reports and output files.
The vast majority of collection (or processing) software have in common some software which also makes analysis. These are called post-processing software. Each post-processing software has its specific analysis, and as data (measures) collected is huge, they can be of great help to solve very specific problems. These tools present the data in tables, maps and comparison charts that help in making decisions.
Regardless of what the post-processing software, all have the functionality to export data in tabular form, in text format or CSV.
This may be an attractive option, especially if you have own tools, developed specifically for your needs.
The following are examples of drive test data processed by Hunter GE Drive Test tool, created entirely in VBA.

One advantage of working with the data this way is that no matter how they were collected, but its content. So for example we can, even if a team has run half the route with a type of software, and another team of drive test shot the rest with another software, we can plot the data from our network on a single desktop. That’s where for example the generic geo-referenced analyzing softwares enters, such as Mapinfo and Google Earth.
Another advantage is that the analysis available in Mapinfo and Google Earth has often a better use, since they are more familiar to most professionals, not just those who specific do/analyse Drive Test. This can be understood as not having to purchase multiple software licenses for post-processing: only one for cases of deeper analysis.
Conclusion
Today we had an overview of Drive Test, a common and efficient technique for evaluating the network.
Analyses made through the information of data collected in the field represent a true picture of network conditions, and can be used in decision making in several areas, from planning and design through optimization and maintenance of the system, always with the goal of maximizing Quality, Capacity and Coverage in the Network.
[Source: telecomhall.com]

Hal-hal yang Perlu Diketahui Tentang LTE

Hal-hal yang Perlu Diketahui Tentang LTE


Perusahaan telekomunikasi dan operator seluler di negara maju sedang gencar menawarkan layanan jaringan nirkabel LTE. Begitupun produsen perangkat mobile, makin giat menawarkan produk yang mendukung jaringan LTE. LTE disebut-sebut sebagai jaringan nirkabel tercepat saat ini, sebagai penerus jaringan 3G. LTE bahkan diklaim sebagai jaringan nirkabel yang paling cepat pertumbuhannya. Jaringan LTE hingga saat ini belum tersedia di Indonesia. Sehingga, tak sedikit masyarakat yang belum mengetahui apa itu LTE.
Long Term Evolution, atau LTE, merupakan standar baru untuk meningkatkan kapasitas dan kecepatan jaringan saat ini. LTE menggunakan radio yang berbeda, namun tetap menggunakan dasar jaringan GSM / EDGE dan UMTS / HSPA. LTE sering disebut dengan istilah 4G (generasi keempat), untuk membedakannya dengan jaringan 3G. LTE pertama kali diadopsi oleh operator seluler TeliaSonera di Stockholm dan Oslo pada 14 Desember 2009.
Kecepatan LTE
Kecepatan maksimum LTE bisa mencapai 299.6Mbps untuk mengunduh dan 75.4Mbps untuk mengunggah. Namun, operator seluler yang telah menyediakan jaringan ini, masih membatasi kapasitas dan kecepatan untuk pelanggannya. Pemerintahan di suatu negara juga punya cara yang berbeda mengatur pengalokasian rentang pita frekuensi.
Mengapa frekuensi LTE berbeda di setiap negara? Pada dasarnya LTE bisa berjalan di seluruh frekuensi. Namun, penyelenggaraan jaringan LTE di setiap negara, bisa jadi berada di spektrum frekuensi yang berbeda. Hal ini disebabkan oleh ketersediaan spektrum frekuensi yang diatur oleh pemerintah dan operator seluler yang mendapatkan lisensi LTE.
Selain itu, beberapa frekuensi juga telah digunakan untuk layanan lain. Di Indonesia misalnya, frekuensi 700MHz digunakan untuk siaran TV analog, dan frekuensi 2.600MHz, dipakai untuk layanan televisi satelit berlangganan. Ini menjadi salah satu alasan, mengapa frekuensi LTE di setiap negara bisa jadi tidak sama. Sehingga, negara dan operator seluler memilih untuk menyelenggarakan LTE di frekuensi yang tersedia.
Frekuensi yang umum digunakan untuk LTE
Di Asia, frekuensi 1.800 MHz dan 2.600 MHz menjadi frekuensi yang umum digunakan untuk penyelenggaraan LTE. Frekuensi ini digunakan oleh Singapura, Hong Kong, Korea Selatan dan beberapa negara Eropa. Di Jepang dan Amerika Serikat, LTE berjalan di frekuensi 700MHz atau 2.100MHz. Sekedar catatan, beberapa negara juga menggunakan frekuensi 800MHz dan 850MHz untuk LTE.
Smartphone LTE belum bisa digunakan secara global
Sering dijumpai sebuah smartphone atau tablet LTE tidak dapat mengaktifkan jaringan LTE-nya di suatu negara. Tablet iPad generasi 3 misalnya, tidak dapat menjalankan LTE di Australia. Hal ini disebabkan cip antena radio di iPad generasi 3 tidak mendukung jaringan LTE di frekuensi tertentu.
Tak hanya iPad, Apple juga membuat iPhone 5 model GSM dalam dua versi dukungan frekuensi LTE. Pertama, iPhone 5 (GSM) Model A1429 yang mendukung jaringan LTE di frekuensi 2.100MHz, 1800Hmz, dan 850MHz. Namun, ia tak mendukung LTE di frekuensi 700MHz. Kedua, iPhone 5 (GSM) Model A1428 mendukung jaringan LTE di frekuensi 700MHz. Nampaknya, Apple akan mengirimkan iPhone 5 model ini untuk Amerika Serikat dan Kanada saja.
Namun, seiring banyaknya operator seluler yang menyediakan jaringan LTE, tak menutup kemungkinan para produsen smartphone dan tablet akan membekali cip radio universal untuk produknya agar mendukung jaringan LTE di seluruh frekuensi.
Biaya masih mahal
Harga berlangganan layanan LTE saat ini memang relatif lebih mahal. Wajar saja, LTE memberi kecepatan akses data yang lebih cepat ketimbang 3G. Tak sedikit pelanggan LTE di negara maju, yang sangat memperhatikan penggunaan kapasitas data yang telah mereka gunakan agar tagihan kartu seluler mereka tidak membengkak.
[sumber: kompas.com]

Sejarah Telekomunikasi Indonesia

Sejarah Telekomunikasi Indonesia


Akses telekomunikasi tidak bisa dilepaskan dari peradaban masyarakat Indonesia. Tidak hanya mempermudah dalam hal komunikasi, namun juga membuka pintu informasi dari luar ke dalam. Menarik tentunya bila kita menyusuri seperti apa menggeliatnya telekomunikasi di Tanah Air dari masa ke masa. Dari sejarah kita bisa mengetahui kapan dan bagaimana awal perkembangan teknologi bisa hadir di Indonesia.
1984
Sejarah dimulai dengan hadirnya Nordic Mobile Phone (NMT) / sistem analog secara global, termasuk indonesia. The Nordic mobile telephone (NMT) system dikembangkan oleh the telecommunications administrations of Sweden, Norwegia, Finlandia, dan Denmark.
1985
Teknologi mulai beralih ke NMT Modifikasi dengan sistem Advance Mobile System (AMPS). Di Indonesia tercatat ada 4 operator yang mengggunakan sistem ini yakni, PT Rajasa Hazanah Perkasa, PT Elektrindo Nusantara, PT Centralindo Telekomindo, PT Panca Sakti.
1993
PT Telkom memulai proyek percontohan seluler digital Global System for Mobile (GSM) di Pulau Bintan dan Batam. Di tahun ini pulalah letak industri GSM mulai bergerak.
1994
PT Satelit Palapa Indonesia (Satelindo) beroperasi sebagai operator GSM pertama di Indonesia yang menggunakan SIM Card.
1995
Setelah Satelindo hadir, menyusul setahun kemudian Telkomsel yang didirikan oleh Telkom pada 26 Mei 1995. Bersama Satelindo menjadi operator GSM nasional pertama. Telkomsel menghadirkan layanan pertamanya, yaitu layanan pascabayar kartuHALO.
1996
PT excelcomindo Pratama (Excelcom) beroperasi di Jakarta sebagai operator nasional ketiga GSM di Indonesia yang berbasis GSM, setelah Telkomsel dan Indosat.
1997
Telkomsel memperkenalkan kartu prabayar (prepaid) GSM pertama di Indonesia dan di Asia sebagai alternatif dari kartu Halo. Pemerintah di tahun yang sama mengeluarkan juga lisensi baru bagi operator seluler berbasis PHS dan GSM 1800 kepada 10 operator baru yang memberikan lisensi regional.
1998
Operator Exelcom tidak mau ketinggalan dengan meluncurkan kartu prabayar proXL yang memberikan alternatif bagi konsumen untuk memilih dengan layanan unggulan roaming. Satelindo yang saat itu berubah nama menjadi Indosat menyusul Telkomsel dan Exelcom dengan meluncurkan kartu prabayar Mentari.
1999
Hingga akhir tahun 1999 di seluruh Indonesia terdapat 2,5 juta pelanggan dan sebagian besar adalah pengguna prabayar Simpati, Mentari dan Pro-XL.
2000
Di tahun inilah layanan pesan singkat (short message service) menjadi fenomena di kalangan pengguna ponsel karena praktis dan berbiaya murah. Di tahun ini juga PT Indosat dan PT Telkom mendapatkan lisensi sebagai operator GSM 1800 nasional.
2002
Perusahaan penyedia jaringan telekomunikasi mulai melakukan ekspansi di Indonesia melalui Ericsson dan Alcatel. Di tahun 2002 ini juga Nokia mulai booming di Tanah Air.
2003
Esia hadir di jaringan CDMA 2000 1x dengan fasilitas layanan Fixed Wireless Acecess dan Limited Mobility. Flexi milik Telkom juga ditahbiskan sebagai operator CDMA pertama di Indonesia. Di segmen GSM, Telkomsel meluncurkan layanan EDGE (Exhanced Data Rates for GSM Evolution) dan menjadikan operator pertama yang  mengadopsi EDGE.
Jumlah pengguna layanan seluler di Indonesia mulai mengalami ledakan. Hal ini disebabkan oleh makin murahnya tarif layanan dan juga semakin terjangkaunya harga handset.
2006-2008
Semakin banyak operator yang mulai masuk ke ranah industri telekomunikasi yang dimulai dari Hutcinshon yang membawa merek dagang 3. Disusul dua tahun kemudian kemudian Axis.
2011-2012
Sampai akhir tahun 2011 lalu, menurut data Asosiasi Telepon Seluler Indonesia (ATSI), jumlah pengguna layanan seluler di Tanah Air mencapai 240 juta lebih.
[sumber: detik.com]